
Stochastic Geometry

Moritz Röhrich
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1 Abstract

Materials are heterogeneous and often have a complex internal microstructure.
This microstructure determines most of the materials physical properties. Ana-
lysing that microstructure ususally involves analysing images obtained expe-
rimentally (e.g. through microscopy). Also generation of microstructures that
reproduce geometric features is useful in computer based simulations of those
materials. Stochastic Geometry revolves around tools for both analysing and
simulating said microstructures.

2 Notation

In this excursion into Stochastic Geometry, the following notations will be used
throughout

B̆ = {−x, x ∈ B}
Ax = {x+ a|a ∈ A} = A⊕ {x}
Ac = {x /∈ A}
λA = A⊕ · · · ⊕A︸ ︷︷ ︸

λtimes

3 Mathematical Operators

The analysis of geometrical structures is theoretically described by mathematical
morphology. It is a general framework that can be applied to more than just
digital images and is fundamental in random set theory. Therefore it is practical
to start with a few concepts from mathematical morphology.

3.1 Minkowski Operations

Definition 1:
Let A and B be subsets of Rd. The Minkowski Addition is then defined by:

A⊕B = {a+ b|a ∈ A, b ∈ B} (1)

Definition 2:
Let A and B be subsets of E. The Minkowski Substraction is then defined by:

A	B = (Ac ⊕B)
c

=
⋂
x∈B

Ax (2)

3.2 Dilation and Erosion

Put in simple terms, the idea behind mathematical morphology is to analyse a
set A by probing it with another compact set K, the structuring element. This
makes use of classical set operator like union and intersection.

2



Definition 3:
Let A be a closed set in a topological space E. The dilated of the set A by the
compact structuring element K is the set:

DK(A) = {x ∈ E|Kx ∩A 6= ∅} (3)

Similarly, the erosion is defined:

Definition 4:

EK(A) = {x ∈ E|Kx ⊂ A} (4)

These two operators are dual in the sense, that DK(A) = (EK(Ac))c, the
dilation of A is the complement to the erosion of the complement of A, wrt.
the same structuring element. Using Minkowski operations, erosion and dilation
can be written as:

EK(A) = A	 K̆ (5)

DK(A) = A⊕ K̆ (6)

3.3 Opening and Closing

Combining dilation and erosion, one can define two new morphological opera-
tors. Let A,B ∈ P(E) be subsets of a topological space E.

Definition 5:
The opening AB and the closing AB of the set A by B are defined by:

AB =
(
A	 B̆

)
⊕B (7)

AB =
(
A⊕ B̆

)
	B (8)

These operator alone provide a lot of functionality both in mathematical
morphology as well as other applications such as image denoising. They are the
fundamental building blocks of stochastic geometry.

There are some interesting properties of the opening respective the closing,
here without proof:

• They are idempotent, that is (AB)B = AB and (AB)B = AB .

• They are increasing, that is A ⊂ A′ implies AB ⊂ A′B and AB ⊂ A′B .

• They are dual to each other: (AC)B = (AB)C and (AC)B = (AB)C .

• The opening is anti-extensive: AB ⊂ A.

• The closing is extensive A ⊂ AB .
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4 Granulometry

The first application of openings and closings in this context are the granulo-
metry operators. These are families of openings (resp. closings) of increasing
sizes, which allows to characterize size distributions of connected components
of random sets. 1

Definition 6:
A granulometry is formally defined as a family of set operators Φλ depending
on a positive parameter λ such that:

1. For all A in F(E), Φλ(A) ⊂ A — Φλ is anti-extensive

2. If A ⊂ B, then Φλ(A) ⊂ Φλ(B) — Φλ is increasing

3. Φλ ◦ Φµ = Φµ ◦ Φλ = Φmax(λ,µ)

4.1 Granulometry by Opening

Definition 7:
Let K be a convex set then the following defines the granulometry by opening
for all closed sets A of F(E):

Φλ(A) = AλK =
(
A	 λK̆

)
⊕ λK (9)

Beweis. To prove that a granulometry by opening is indeed a granulometry, all
three criteria must be fulfilled. Now the second property is a direct consequence
of the opening beeing an increasing operation. To prove the third property, one
can without loss of generality assume:

λ = ν + µ

Then:

Φλ(A) = (A	 λK̆)⊕K (10)

= (A	 λK̆)⊕ νK︸ ︷︷ ︸
C

⊕µK (11)

= C ⊕ µK (12)

Therefore Φλ(A) is open with respect to µK or in other words Φµ(A) = A.
Utilizing the indepotence this yields:

Φµ(A) = A (13)

(Φµ ◦ Φλ)(A) = Φλ(A) (14)

⇒ Φλ ◦ Φµ ◦ Φλ = Φλ ◦ Φλ = Φλ (15)

Now using the anit-extensiveness of the opening operation:

1Traditionally, granulometries or rather granular spectra were determined experimentally
in grainy materials by sieving with increasingly fine sieves.
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Φλ(A) ⊂ (Φλ ◦ Φµ)(A) (16)

But since the opening is an increasing operation, the converse is true as well:

(Φλ ◦ Φµ)(A) ⊂ Φλ(A) (17)

This imples both Φλ ◦ Φµ = Φλ and Φλ ⊂ Φµ, the third and the first
property.

4.2 Granular Spectrum

If condition 1, the anti-extensiveness, is negated, the result is called an anti-
granulometry. A family of set operators defined as:

Φλ(A) = AλK =
(
A⊕ λK̆

)
	 λK (18)

is such an anti-granulometry. More specifically it is the anti-granulometry
by closing. Together, the granulometry and anti-granulometry form a granular
spectrum.

5 Choquet Capacity and Covariance

The previously introduced concepts of mathematical morphology come in very
handy when studying random sets. In particulat, when translating some com-
pact set K in an observation window (e.g. a picture) to analyse a random set
A, two elementary events can occur: K ∩ A = ∅ and k ∩ A 6= ∅. Therefore one
can define a characterizing functional T (K):

Definition 8:

T (K) = P{A ∩K 6= ∅} = 1− P{K ∩Ac} = 1−Q(K) (19)

T (K) is called the Choquet Capacity of A.

The choice of structuring element K is fundamental to the information ob-
tained from the studied set A.

Example 1:
Let K = {x} be a single point.

T ({x}) = P{{x} ∩A 6= ∅} = P{x ∈ A} (20)

This is also called the spacial law of the set A.
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5.1 Covariance

Definition 9:
The covariance of a random set A ⊂ Rn is the function CA defined on Rn×Rn
by:

CA(x, x+ h) = P{x ∈ A, x+ h ∈ A}, (21)

with h ∈ Rn.

The covariance of the set A at a given point x for a distance h is the probabi-
lity that both x and x+h belong to A. Note that for h = 0 this just corresponds
to the spacial law. Usually it is estimated from experimentally obtained samples,
using the following equation, if A is stationary and ergodic:

CA(h) = P{x ∈ A ∩A−h} = V (A ∩A−h) = V (A	 H̆) (22)

where H = {−h, h}. The Covariance therefore gives information about the
presence of periodic structures in the random set A.
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